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also assign a somewhat reduced polarizability of 1.0 for CIM+ 
and the equivalently mapped CGD+, the central carbon atoms 
in these cationic systems. Finally, for 0 + , O=+, and 0%+, 
formally charged oxygens of hybridization sp3, sp2, and sp, re-

1. Continuous Symmetry Measures. Why Are They Needed? 
One of the most deeply-rooted paradigms of scientific thought 

is that Nature is governed in many of its manifestations by strict 
symmetry laws. The continuing justification of that paradigm 
lies within the very achievements in human knowledge it has 
created over the centuries.1'2 Yet we argue that the treatment 
of natural phenomena in terms of "either/or", when it comes to 
a symmetry characteristic property, may become restrictive to the 
extent that some of the fine details of phenomenological obser­
vations and of their theoretical interpretation may be lost. Atkins 
writes in his widely-used text on physical chemistry: "Some objects 
are more symmetrical than others",3 signaling that a scale, 
quantifying this most basic property, may be in order. The view 
we wish to defend in this report is that symmetry can be and, in 
many instances, should be treated as a continuous "gray" property, 
and not necessarily as a "black or white" property which exists 
or does not exist. Why is such a continuous symmetry measure 
important? In short, replacing a "yes or no" information pro­
cessing filter, which acts as a threshold decision-making barrier 
which differentiates between two states, with a filter allowing a 
full range of "maybe's", enriches, in principle, the information 
content available for analysis. 

This report contains four sections. In the next section we 
develop in some detail the notion of the need for a symmetry scale. 
It is an important part of the report because the very question 
at hand is not trivial and is certainly not standard or routine, and 
some readers may need persuasion that efforts to answer this 
question are worthwhile and may perhaps lead to a useful 
framework of discussion of symmetry issues in chemistry.4-7 Yet, 
we recall at this point that the door to the questions we pose has 
been at least partially opened. For instance, Murray-Rust et al. 
have suggested the use of symmetry coordinates to describe nuclear 
configurations of MX4 molecules that can be regarded as distorted 
versions of the Td symmetrical reference structure.8'9 More 
recently, Mezey and Maurani1011 extended the point symmetry 
concept for quasi-symmetric structures by using fuzzy-set theory 

' Department of Computer Science. 
* Department of Organic Chemistry. 

spectively, we take 0.4 for the polarizability. To be sure, these 
polarizabilities cannot be said to be known accurately, but we 
include them in Table XIII to suggest how vdW parameters might 
be expected to behave in such chemical environments. 

(terming it "syntopy" and "symmorphy") and provided a detailed 
demonstration of its application for the case of the water mole­
cule.12 Also of relevance are proposals for chirality scales (for 
some different approaches, see, for example, refs 13 and 14). 

In Section 3, we offer a tool for the quantitative assessment 
of symmetry contents which is, we believe, efficient, easy to im­
plement, and general in the sense that it is applicable to a wide 
and diverse array of symmetry problems as detailed below. All 
the required principles and practical aspects of this tool are given 
in Section 3 using cyclic structures as examples. For the interested 
reader and for sake of completeness, we provide rigorous math­
ematical proofs in the Appendix. In Section 4 we demonstrate 
the implementation of our approach on three additional problems: 
conformations of open-chain n-alkanes, the vibrating water-like 
molecule, and the symmetry of a [2 + 2] concerted reaction. These 
three examples are but the tip of the iceberg, the outlines of which 
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Figure 1. The distortion of the C20 symmetry of a water molecule by the 
v3 vibration mode. 

are given next. 

2. Continuous Symmetry Measures. Where Are They 
Needed? 

Everywhere, we believe. Here is a selection of specific examples 
which illustrate our main argument. 

2.1. "Allowed" and "Forbidden" Transitions in Electronic 
Spectra. The present report was seeded in an earlier study.15 

There, Meyer suggested the following. Consider, for instance, 
the very weak («miI» 200) forbidden ir -* ir* transition to the 
lowest-lying singlet in benzene (Ag -» B2u) and compare it with 
the carbon skeleton of toluene. The D6h symmetry of the benzene 
hexagon changes to a distinctly different point group, C21-, yet the 
extinction coefficient increases only to tma = 225. Current wisdom 
of accounting for the discrepancy between the major symmetry 
change and the small effect in the "allowedness" of the transition 
is to use such arguments that "the methyl perturbs the ir system 
only to a small extent"; i.e., the day is saved by resorting to "local" 
symmetry. We suggest that a natural way to present this problem 
is to ask: By how much does the symmetry of toluene deviate 
from D6h1 That this type of question is indeed more natural for 
approaching electronic transitions is further evident by taking the 
above example to an extreme, i.e., comparing the benzene/deu-
terobenzene pair. Again, the situation is of Dih versus C211, yet 
physical intuition suggests that, when properties of these two 
molecules are comparatively analyzed, it is more reasonable to 
determine the AD6h of the latter than ascribe C211 to it. For an 
account of the successes of perturbation approaches such as "near 
symmetry groups", see for example, ref 16. 

2.2. Vibrations and Dynamic Properties of Molecules.17 Some 
of the properties of molecules can be discussed in terms of their 
"frozen" structure, which is usually taken to be the equilibrium 
stable structure. However, many other properties are directly 
linked to the more realistic picture of an ever-dynamic molecule, 
which vibrates, rotates, and translates. The symmetry problematics 
described above appear here too. Consider, for instance, the 
vibrating water molecule. This is a C21, molecule and its V1 and 
V2 vibrational modes preserve this symmetry. But what about v3? 
This vibrational mode distorts the Cp symmetry (Figure 1), and, 
again, a legitimate question is by how much does the molecule 
deviate from C21, after 1% of one cycle, after 10% of it, and so 
forth; AC20 oscillates in time, and that oscillation is linked to a 
plethora of associated physical properties. One example is the 
changes in time of the dipole moment of the molecule due to that 
V3 mode and the consequent change in time of the probability of 
interaction with an external field. Indeed, coming back to elec­
tronic transitions, since vibrations can destroy a molecular sym­
metry to such an extent that a forbidden transition in an idealized 
perfect symmetry becomes partially allowed, one can, in principle, 
follow by our suggested approach the gradual relaxation of for-
biddenness along the time coordinate of a given vibrational mode.18 

2.3. Crystal Field and Ligand Field Effects in Environments 
of Distorted Symmetry. A well-known phenomenon is the removal 
of the degeneracy of energy levels of a chemical species whenever 
contained in an environment of symmetry other than its own (a 
certain arrangement of ligands or a certain packing in the crystal). 

(15) Avnir, D.; Meyer, A. Y. J. MoI. Struct. (THEOCHEM) 1991, 226, 
211. 

(16) Bunker, P. R. Molecular Symmetry and Spectroscopy; Academic 
Press: New York, 1979, Chapter 11. 

(17) Cf.: (a) Longuet-Higgins, H. C. MoI. Phys. 1963, 6, 445. (b) 
Chapter 3 in ref 5. 

(18) Distorted hexagons are used intensively in Section 3. For a pioneering 
study of the vibrational distortions of a hexagon, see: Wilson, E. B. Phys. Rev. 
1934, 5, 706. 

The degree of removal of degeneracy is directly linked to the 
"decrease" in the symmetry of the environment, compared to the 
isolated chemical species. Traditionally, this problem is treated 
in terms of jumps in the symmetry point group. For instance, the 
splitting of the degenerate p-orbitals increases from a2u + eu in 
a Z)4* environment to a) + b, + b2 in a C7x environment.19 (Cf. 
also the celebrated Jahn-Teller effect which is based on symmetry 
destruction in molecules with partially filled orbitals.) 

The recognition that environments exhibiting a continuous range 
of distorted symmetries are as abundant, if not more, than ideally 
symmetric environments, has spread fast, especially in the past 
decade.20 For instance, ions, molecules, and ion-ligand complexes 
adsorbed on materials, such as metal oxides or encapsulated in 
inorganic glasses, experience not one environmental symmetry but 
some "symmetry ± Asymmetry" (say, an octahedral liganding 
of a cation in an environment of amorphous (Si02)-0" materi­
als).21 Again, it seems to us more natural to approach such 
systems in terms of a continuous symmetry scale. 

2.4. Symmetry Rules for Reaction Coordinates and Orbital 
Symmetry Conservation. The principle of conservation of orbital 
symmetry has caused a quantum leap in the understanding of 
reaction pathways in organic chemistry. This is already well 
documented in elementary textbooks, which is a sign of its coming 
of age. The time therefore is ripe, it seems to us, to introduce 
some fine-tuning of the strict picture, and in particular to relax, 
again, the ideal "yes or no" situation to the real-world gray area 
which has been treated so far with difficulties and with ad hoc 
explanations. This is a vast field indeed, but it suffices to take 
one very basic problem to illustrate our point. Consider two 
ethylenes approaching each other for a [2 + 2] reaction. The 
answer to the question of whether that reaction is allowed ther­
mally or photochemically, or whether a suprafacial or antarafacial 
process will take place, or whether the reaction will take place 
at all, is very much dependent on the symmetry of alignment of 
the two reacting molecules or moieties. The extremes are D21, for 
a parallel approach and C2 for an orthogonal approach, and it 
is predicted successfully22 that the former is needed for a su­
prafacial photochemical formation of cyclobutane. Most of the 
time, however, the two ethylenes are not in an ideal D2h ar­
rangement. This may be due to an intramolecular frozen con­
formation of the two double bonds, to nonsymmetric sterical 
hindrance caused by substituents on the double bond, and to the 
dynamical nature of the system (rotations and translations es­
pecially in viscous media). We seek a tool that will enable one 
to answer the following basic question: What is the (static or 
dynamic) relation between the degree of deviation from a given 
symmetry and the allowedness of a reaction? In our case: what 
is the relation between changes in AD21, or C2 and, e.g., the reaction 
rate of a photochemical [2 + 2] reaction? 

2.5. Ordering in Molecular Assemblies. The efficiency with 
which assemblies of molecules pack or undergo phase transition 
is very much determined by their (static) shape symmetry. This 
is true for crystallization, for packing of monolayers, for ordering 
within the shells of micelles, for ordering within domains of liquid 
crystals, within Langmuir-Blodget films, within islands of ad-
sorbates in submonolayer coverages and within the complete 
monolayer. A continuous symmetry measure may help quantify 
the relation between molecular shape and ordering in all of these 
assemblies. Motivated by this packing problem, Kitaigorodskii 
suggested in his classical work23 to use non-overlapping volumes 
of two enantiomers as a suitable measure. 

2.6. Symmetry of Polymers and of Large Random Objects. 
Much effort has been invested in recent years in understanding 
the mechanism of formation, the chemical properties, and the 

(19) Tables 6-12 in ref 4. 
(20) On Growth and Form; Stanley, H. E., Ostrowsky, N., Eds.; Martinus 

Nijhoff: Dordrecht, 1986. 
(21) Levy, D.; Reisfeld, R.; Avnir, D. Chem. Phys. Lett. 1984, 109, 593. 
(22) Fleming, I. Frontier Orbitals and Organic Chemical Reactions; 

Wiley: Chichester, 1987. 
(23) Kitaigorodskii, A. I. Organic Chemical Crystallography; Consultants 

Bureau: New York, 1961; Chapter 4. 
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Figure 2. Distorted hexagons, 
distant from C6 symmetry? 

By how much is each of these shapes 

physical properties of disordered systems.20'24 These include 
polymers, aggregates, clusters, electrodeposits, chemically sputtered 
surfaces, partially dissolved and reacted objects, precipitates, and 
powdered, crushed, and fractured objects. Many of the classical 
question marks which linked molecular level properties to their 
symmetry are applicable for the large, disordered, or imperfect 
objects as well. For instance, one can ask by how much does the 
C6 symmetry of a growing snowflake fluctuate around the ideal 
C6 structure along the time axis of its growth? Or one can ask: 
given a random growth process such as an electrochemical de­
position, what is the symmetry of that electrodeposited aggre­
gate?25 And even more interesting, repeating such an experiment 
twice, do the two products have the same symmetry despite being 
randomly non-identical? And how do properties like, e.g., im­
pedance differ between these two objects as a consequence of a 
slight variation in symmetry? By virtue of the random element 
in a growth process, all objects formed by it are distinctly different 
from each other, for instance, in the sense that they are not 
superimposable; yet they "look alike" and one can easily recognize 
that they belong to the same "species". Such situations call for 
a major change in the description of a geometrical object; one is 
better off replacing specific, point by point descriptions, with global 
descriptors. What then is a suitable global continuous symmetry 
descriptor of large random objects? What are the implications 
of discussing the symmetry properties of objects that can never 
be formed again? 

These are but some of a much longer list of classical problems 
in chemistry which are intimately associated with issues of sym­
metry,3"7 and which, we believe, may gain from the refinement 
of the "yes or no" attitude. Having explained the rationale of this 
need, we make a specific and explicit suggestion of how to ap­
proach it in the next section. 

3. Continuous Symmetry Measures (CSM): The Method 
3.1. General Properties of the CSM and Its Definition. Figure 

2 shows distorted hexagons, perhaps some frozen moments in the 
distortional vibration of benzene. We seek to answer the following 
question. By how much is each of these objects distant from a 
rotational C6 symmetry, or from a C3 symmetry, or from a C2 
symmetry (actually regular hexagons are D6n, but we concentrate 
here on only one of its symmetry elements), or from a reflection 
a symmetry? We emphasize that we are dealing with deviation 
from a symmetry element and not with a deviation from a specific 
object having the required symmetry. Thus, although it is a 
straightforward guess that the C6 object in the above example is 
an ideal hexagon, it is not known a priori what is the exact shape 
of the C3 object which is closest to each of the distorted hexagons. 
Our method identifies that the minimal correctional procedure 
on the hexagon in Figure 2f toward an ideal C3 object yields object 
c in Figure 3. In fact, our method provides a set of distances 
to various symmetry elements (Figure 3) and identifies which is 
the closest. Additionally, we obtain the explicit shapes which 
correspond to each of these closest symmetries (Figure 3). 

(24) Scaling Phenomena in Disordered Systems; Pynn, R., Skjeltorp, A., 
Eds.; Plenum: New York, 1985. 

(25) Pajkossy, T. J. Electroanal. Chem. 1991, 300, 1. 

a \ S(C2) =1.87 

b \ S(C3) = 1.64 

c S(C6) = 2.53 

S(C) = 0.66 

Figure 3. The C2, C3, C6 and a symmetry shapes closest to the distorted 
hexagon of Figure 2f. Corresponding symmetry values (defined below) 
are displayed. It is seen, for example, that the distorted hexagon is "much 
more" <r-symmetric than C6-symmetric. 

OmV 

Pi / 

a. b. 
Figure 4. The continuous symmetry measure procedure for evaluating 
the C3 symmetry of a triangle P0, P1, P2. Follow Section 3.2 with this 
figure. 

Definition: The continuous symmetry measure quantifies the 
minimal distance movement that the points of an object have to 
undergo in order to be transformed into a shape of the desired 
symmetry. In practice, the sum of the squares of these distances 
is taken (being isotropic, continuous, and differentiable; see Ap­
pendix), normalized to the size of the object. We refer to this 
operation as the symmetry transformation (ST). 

In this report we restrict ourselves to the shape of molecules, 
and not to their mass or electronic distributions. Relaxing this 
limitation will require a selection of molecular properties other 
than shape, e.g., charge distribution contours, but will not require 
principal changes in the method. We treat here the basic sym­
metry operations of rotation and reflection; combinations thereof, 
i.e., symmetry groups, are left for subsequent reports. 

3.2. Deviation of Imperfect a-Gons from Cn Symmetry. We 
explain and discuss most of the properties of the ST for the case 
of polygons in two dimensions and extend it to additional cases, 
including a three-dimensional case in Section 4. We begin with 
the basic question: by how much does a distorted polygon of n 
vertices deviate from a Cn symmetry? For the sake of simplicity, 
let us take the case of the smallest n, a triangle (any triangle), 
and ask by how much is it distant from a C3 symmetry? The 
procedure employed to answer it is as follows (Figure 4). 

Given a polygon (triangle) whose vertices are P0, P1, P2 in a 
clockwise order (Figure 4a): 

1. Identify the center of mass of the shape (in our case, the 
triangle), Om. This is done by averaging the x,y coordinates of 
the vertices. 

2. Scale the size of the object so that the longest distance from 
On, to any one of the vertices is one. 

3. Fold points P1 as follows: rotate vertex P1 counterclockwise 
around Om by 2x//3 radians. In our case rotation P1 counter­
clockwise around Om by 2TT/3 radians and P2 by 4 T / 3 radians 
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Table I. Continuous Symmetry Measure S Values of Various 
Distorted Hexagons 

shape" S(C1) S(C3) S(C6) SM 
0.46 
0.12 
0.61 
1.80 
2.41 
1.87 

0.88 
1.61 
0.78 
1.38 
1.59 
1.64 

1.26 
1.63 
1.00 
2.96 
2.63 
2.53 

0.18 
0.23 
0.27 
1.53 
1.70 
0.66 

"See Figure 2. 

S(C3) =12.80 

S(C4) = 3.69 

S(C5)= 12.40 

S(C7) = 1.56 

Figure 5. The distance of various n-gons to their corresponding Cn sym­
metries and the closest C„-symmetric shapes. 

(Figure 4a). P, is converted to P1, i.e., P0, Pu P2 are converted 
to P0, P1, P2 (where P0 = P0). 

4. Average the three vectors P0, P~i< ^i obtaining P0. 
5. Unfold P0 as follows (Figure 4b): rotate P0 clockwise around 

On, by 2*7/3 radians, obtaining P,. In our case: P0 remains in 

5lace; P1 is obtained by rotating P0 2x/3 radians clockwise and 
'2 by 4ir/3. A C3-symmetric triangle is obtained. 

6. The averaged square of the translation distances P0 to P0, 
P1 to P1, and P2 to P1 is the symmetry measure of the original 
triangle, with respect to C3. 

In general, we define the C„-folding of n points, as the rotation 
of each P1 around the center of mass by 2m jn radians counter­
clockwise forming Pt. These are then averaged to obtain P0 which 
is Cn-unfolded by clockwise rotation around the same center by 
2-KXJn radians obtaining P1. The original set of points is thus 
transformed into a set which has a Cn symmetry. The continuous 
symmetry measure, S, of the original points is the averaged square 
of the transitions P, to P1: 

ZWP1'-PiW1 

S(sym) = 100— 
n 

where (sym) indicates the symmetry element under study and the 
factor of 100 is introduced only for convenience of handling the 
S values. In the Appendix we prove that 5 is a minimal distance 
value. S can take values between 0 and 100. S(sym) = 0 means 
that the object has the undistorted symmetry. The maximal value 
for 5 is obtained when the "closest" symmetrical shape is a point 
(see Appendix, section B). 

Returning to Figure 2 we can now provide the S(C6) values 
of the various distorted hexagons; these are given in Table I. And 
in Figure S a number of different n-gons along with their S(Cn) 
values are given. The two figures serve not only for demonstrating 
the method, but also to help develop an intuitive feeling of the 
relation between the S values and the actual deviations from the 
symmetry elements. 

3.3. deviation of an Imperfect o-Gon from Cn, (m< a). For 
distorted n-gons one can also ask: what is its deviation from a 
Cn, symmetry which is lower than CnI For instance, on each of 
the hexagons of Figure 2, one can ask that question for C2 and 
C3. In general, it is more natural to ask that question for Cn with 
n = qm where q is an integer. (Thus, assessing by how much is 

Figure 6. The division of the vertices of an n-gon into subsets for the 
calculation of S(Cn) values (where m < n): (a) two triangles for cal­
culating S(Ci), (b) three diagonals for calculating S(C2). Follow Section 
3.3, step 1, with this figure. 

Figure 7. Obtaining the symmetry value and a C3-symmetric hexagon 
from the distorted hexagon of Figure 6. a—b is performed as in Figure 
4. b-*c is performed by translating each subset of vertices such that its 
center of mass (+) coincides with the center of mass of the object (9). 
Follow Section 3.3, steps 2 and 3, with this figure. 

a distorted hexagon distant from C4, C5 is left for the moment 
although it is possible to carry out this calculation as well.) The 
evaluation of S(Cn,) is demonstrated for a hexagon and is per­
formed as follows. 

1. In order to obtain a Cn, (n = qm) symmetry for an n-polygon, 
one first divides the set of all n vertices to q subsets of m vertices 
each (Figure 6). These subsets are selected to connect m vertices 
so that they are separated from each other by (n/m) - 1 vertices. 
In a hexagon this means two triangles for m = 3 (Figure 6a) and 
three diagonals for m = 2 (Figure 6b). 

2. Each of the m-gons is symmetrized to Cn, as described in 
the previous section for Figure 4a. In our case, two triangles are 
symmetrized to C3 (Figure 7a - • Figure 7b). 

3. Each of the symmetrized m-gons (or diagonal) is translated 
minimally to coincide its shape center of mass with the center of 
the original n-gon (Figure 7b - • Figure 7c). The resulting object 
is an n-gon with a Cn, symmetry (in our case, a C3 hexagon). 

4. The S value is calculated as in step 6 above. 
The proof that this procedure is the minimal most efficient 

operation is given in the Appendix. Table I collects the CSM 
values of S(C2), S(C3), and S(C6) for the set of hexagons shown 
in Figure 2. 

3.4. Reflection Symmetry. Reflection is the second basic 
symmetry operation we treat here. A CMS for this case is con­
structed in a similar way to the rotational symmetry measure as 
follows (Figure 8). Given a pair of points P0, P1 and a reflection 
axis (On,, 6): 

1. Denote P0 - P0. 
2. Reflect P1 across the reflection axis obtaining P1 (Figure 

8a). 
3. 
4. 

8b). 
5. The CSM S(a) value of the original pairs of points is 

obtained by averaging the squared distances P0 to P0 and P1 to 
K 

Average the vectors P0 and P1 obtaining P0. 
Reflect back P0 across the reflection axis obtaining Px (Figure 
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Om, 

P.= P. / ' / . 

a. 
Figure 8. Calculating the S(a) value of a pair of points P0, P1 given a 
reflection axis (Om, B). (a) Reflect Px across the reflection axis obtaining 
[P0, ^i I and average them obtaining P0. (b) Reflect P0 across the re­
flection axis obtaining P1. P0 and P1 are a--svmmetric. Follow Section 
3.4 with this figure. 

Figure 9. Pairing vertices for evaluation of S(a) values (see Section 3.4). 

To evaluate the reflection symmetry in a polygon of m vertices, 
we divide its vertices into pairs and then perform the above 
procedure for every pair. Pairing vertices of a polygon is performed 
by dividing its sequence of vertices into two subsequences of equal 
length while preserving their ordering. Reflection symmetric 
pairing is performed between vertices of the two subsequences. 
Thus a possible division of the vertices of the hexagon in Figure 
9a is {2,3,4) and (5,0,1) with the corresponding pairing (2,1), (3,0), 
and (4,5). If the given polygon has an odd number of vertices, 
one of the vertices is duplicated, and the division of the sequence 
of vertices is such that each subsequence includes a copy of the 
vertex. Thus the heptagon in Figure 9c can be paired as: (5,5), 
(4,6), (3,0), and (2,1). If the given polygon has an even number 
of vertices, a pairing may be performed by duplicating two vertices 
which are m/2 vertices apart. Thus the hexagon in Figure 9b 
can also be paired: (0,0), (5,1), (2,4), and (3,3). 

In general, to evaluate the CSM for reflection symmetry of a 
given polygon, perform the following. 

1. Pair the vertices of the polygon. 
2. Normalize the shape (as in steps 1 and 2 in Section 3.2). 
3. Evaluate S(a) of each pair over a given symmetry axis, as 

previously described. 
4. Average the S(<r) values of all the pairs obtaining the S(a) 

value of the polygon. 
5. Minimize the S(a) value over all possible pairings of the 

vertices. 
If a reflection axis is not chosen a priori, then minimization 

over all possible reflections axis is performed. (In the Appendix 
we show that this minimization has an analytical solution.) Figure 
10 shows a number of shapes, their S(a) values, and the sym­
metrized objects obtained. See also Table I for the 5(<r) of the 
hexagons of Figure 2. 

In the next section we provide some additional examples of how 
the CSM procedure is applied. 

4. Continuous Symmetry Measures: Further Examples 
4.1. Linear and Branched Distorted x-Systems. Having con­

centrated on polygons in Section 3, we first show how to extend 

S(O) = 3.77 

S(O-) = 1.03 

S(O) = 2.02 

S(O) = 0.73 

Figure 10. The S(c) values of various n-gons and their closest <r-sym-
metric shapes. 

Figure U. The distance of a distorted all-trans hexane skeleton to an 
all-cis. The CSM method identifies that the closest suitable conformer 
of the all-trans is the all-cis. 

S(C2) = 2.02 

Figure 12. The S(C2) value and the closest C2-symmetric shape of a 
distorted substituted ethylene. 

the method to polylines. The conformational freedom of polylines, 
e.g., n-alkenes (or n-alkanes), is of course much richer than po­
lygons, ranging from all-trans to all-cis and anywhere in between. 
In such cases, it is helpful (though not necessary) if one confines 
oneself to the symmetry analysis of the conformer of interest. For 
instance, if one wishes to analyze the symmetry constrains on the 
Cope rearrangement of 1,3,5-hexatriene, then the all-cis conformer 
is of relevance. The treatment of these cases is along the same 
procedural lines employed for the polygons: P0 and P5 are closed 
with an imaginary line and symmetrization is carried out as in 
Section 3. Examples are the hexagons of Figure 2 in which one 
bond is opened, with the corresponding S values in Table I. The 
strength of our approach is, however, that it is not necessary to 
"guess" what is the suitable conformer of hexatriene. It is capable 
of finding that the closest suitable conformer of the distorted all 
trans is the perfect all-cis. This is shown in Figure 11. 

The approach to branched molecular skeletons is similar. For 
instance, if the S[C2) value of a tetrasubstituted ethylene is sought, 
then, as in the case of the hexagon, the three subset pairs are 
P1-P/, P1-P2', and P3-P3' (Figure 12). 

4.2. The Vibrating ABA Molecule. In Figure 1 we showed a 
snapshot of the third vibrational mode of a water-like ABA 
molecule which reveals a distortion from C2 symmetry. We are 
ready now to present it quantitatively: In Figure 13 (line a) the 
S(C2) spectrum for a full cycle is shown. The symmetry axis is 
not in a fixed location (see Figure 14b) although it always passes 
through B (the oxygen, in the case of water) and is chosen so as 
to give the minimal 5 value. It is seen that the CSM behavior 
of this system shows two maxima and two minima in one cycle. 
This is a reflection of the left-right symmetry within one cycle; 
except for the minima, molecular shapes separated by half a cycle 
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y axis 

% of Cycle 

Figure 13. The changes in S(C2) during one cycle of a vibrating 
water-like hypothetical ABA molecule: (a) the v} vibration mode. Both 
A's and B oscillate harmonically. The maximal stretching of A-B and 
maximal movement of B is 25% of the A-B bond length at the perfectly 
Cj-symmetric state, (b) As in (a) but B is fixed, (c) As in (a) but B and 
one of the A's are fixed. 

s = 3.8 

s = 0.0 

5 = 3.8 

s = 0.0 

time = 0.0 

s = 1.9 

s = 0.0 

s = 1.9 

= 0.0 

Figure 14. The molecular positioning of the vibrating ABA molecule at 
(a) the four extremum points of line b of Figure 13; (b) the four extre-
mum points of line a of Figure 13. 

are enantiomeric pairs in two dimensions. Thus, the CSM scale 
serves here also as a continuous chirality measure;1314 the shapes 
at the maxima are much more chiral than shapes that just emerge 
from the minima. Our tool additionally enables the isolation of 
the effects of specific atomic motions in a complex vibrational 
mode. For instance, line b in Figure 13 shows what happens if 
the vertex B is frozen in the x3 mode under analysis here. The 
S values almost double; that is, we see that the small left-right 
movements of B has a correctional effect on the distortive effect 
of the A-B stretchings. This effect is clearly seen in Figure 14. 
Incidentally, such freezing of one atom is not entirely hypothetical. 
Imagine, for instance, B being a surface moiety and the two A's 
as dangling surface-derivatizing residues. One can go on with 
this, and let only one A-B bond vibrate (the result is also shown 
in Figure 13, line c; the symmetry of the two half-cycles is elim­
inated as expected). 

4.3. The [2 + 2] Concerted Reaction. A Three-Dimensional 
CSM Analysis. We are now ready to present the problem of 
non-ideal alignment symmetry for a concerted reaction, in a 
quantitative way. The specific case used in Section 2 (example 
4) for illustrating that problem was of a [2 + 2] concerted reaction. 
The rate of this reaction, as well as any other concerted reaction, 
should be greatly determined by the degree at which the symmetry 
of the system deviates from the ideal. Following is the CSM 
approach to quantify this deviation (Figure IS). 

Two ethylenes, P1, P3 and P0, P2, are placed in the xz plane 
as shown (the p-orbitals, not shown, are properly aligned in that 
plane). Deviation from this ideal D2k arrangement can be ex­
pressed in terms of three rotations of P1, P3, leaving P0, P2 fixed: 

xaxis 

Figure 15. The ideal alignment of two reacting ethylenes (P1,P3 and 
Pofi), and the angles of rotation (a, 6) which cause deviation from that 
symmetry. 

[2+2] Concerted Reaction 

^ > / . - • > . * 

Figure 16. The CSM behavior of the mutual alignment of two ethylenes. 
9 and a are defined in Figure 15. 

Figure 17. Two extreme non-ideal alignments of the ethylenes of Figure 
15. In Figure 16 these are: (a) the forefront maximum tip and (b) the 
back straight line. 

rotation around the z axis with an angle 6; rotation around an axis 
parallel to the y axis, as shown, with an angle a; and rotation 
around the PrPi axis. For sake of clarity, we omit the third 
rotation (though it can easily be added if desired). We thus reduce 
the problem to the following: what is the CSM behavior of two 
segments in space with reference to an ideal parallel alignment? 
Evaluation of S(D2/,) requires the calculation of S{axy,oyz,oxl), 
but in our case axl is redundant and, therefore, in practice, we 
measure S(axy,ayi). CSM calculations in 3D are not different 
in principle from the 2D S(a) calculations (Section 3.4), and some 
technical aspects of it are summarized in Part C of the Appendix. 
An important feature of the calculation is the following. We do 
not seek the deviation from a specific parallel alignment in a fixed 
xyz-frame of reference; for a reacting system the relevant value 
is the deviation from the nearest parallelism, and that can be at 
any set of angles in the fixed framework. The interesting 
three-dimensional map of results is shown in Figure 16. To 
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JV1 = Rg(N0 - Co) + CO 

TV1 = R^(N0 - co) + co 

where R9 is the matrix of rotation by angle 2ir//i. 
In general, for each subgroup we have: 

/V1n+1 = R9(N1n - co) + co 

Figure 18. Demonstration of the extreme case, S = 100. Here it is the 
value of S(C2) for a hexagon which has pairs of vertices infinitely close 
to each other (a). The object closest to the hexagon, having C2 symmetry 
is a point at the center of mass (b) (see part B of the Appendix). 

explain it, let us start with the a = 0 line, along which only 8 
changes. It is seen how the rotation around the z axis causes a 
gradual increase in the 5 value, reaching a maximum value at 
x/2 radians. Here the two ethylenes are perpendicular in two 
different planes (Figure 17a), the most distortive situation com­
pared to D2n parallelism. Let us now move to the other extreme, 
a = x/2, which is shown in Figure 16 as a line parallel to the 8 
axis. Here the two ethylenes are perpendicular but in the same 
plane (Figure 17b), and 8 rotation has no effect. It is also seen 
that perpendicularity in different planes (8 = ir/2; a = 0) is less 
favorable than perpendicularity in the same plane (a = T/2; any 
8), and intuition agrees with that observation. The general trend 
for other 6, a combinations is more complex; a-tilting diminishes 
the distortive effect of 0-tilting except for a narrow window 
centered at 8 = T /2 , where 8 governs. 

The approach, demonstrated here for the two ethylenes is 
general and can be applied to any other reactive system where 
the symmetry of the mutual alignment of the reactants, whether 
inter- or intramolecular, is crucial. We believe that the road is 
clear now for linking continuous symmetry changes to other re­
action observables. 

5. Conclusion 
In this introductory paper we have concentrated on three aspects 

of continuous symmetry measures. First, we presented a detailed 
discussion on why such measures are needed in chemistry and in 
the natural sciences at large; second, we designed a general, easily 
implementable tool capable of measuring the symmetry content 
with regard to rotation and reflection; third, we gave a preliminary 
demonstration of its applicability in analyzing the symmetry 
properties of common cyclic and open structures, of a vibrating 
structure, and of interacting molecules. In subsequent reports 
we concentrate on the continuous symmetry properties of other 
symmetries, on symmetry issues of large random objects, and on 
correlating the CSM to other physical and chemical measurables 
as outlined in Section 2. 

Acknowledgment. We thank S. Shaik and I. Hargittai for useful 
discussions and comments. 

Appendix 
A. The Symmetry Transform in 2D: Computations. A.l. Cn 

Symmetry. Given a set of vectors (whose source is the origin, and 
destinations are points of an object) P0,..., Pn^1, we assume m 
= nq. For simplicity we assume that the division into q subgroups 
of n vertices (as described in Section 3.3) is such that every n 
consecutive vectors constitute a subgroup (i.e., [P1n,..., P1n+(^1)) 
for i = 0...q - 1 is a subgroup). We wish to find the C„-symmetry 
transformation of these vectors. 

Denote by N0,..., JVn̂ 1 the vectors obtained from P0,..., P n^ 
under the symmetry transformation. Following the symmetry 
transformation definition, the following must be minimized over 
/V0, •••, Nm-i'. 

WN0 + WNn., - P„ 

/%„+(„_„ = RTl(Nln -a)+ u 

(i.e., for each subgroup, the transformed vectors constitute a 
regular n-gon with center of mass coinciding with the center of 
mass of all transformed points). 

Thus the following must now be minimized: 
||/V0 - P0H

2 + ... + WRfKN0 - co) + co - JV1H
2 + ... + 

WNn^n - Pm .J2 + ... + WBT1W^n - a.) + a. - P^1H
2 (1) 

Taking the first derivative with respect to N0 and equating to zero, 
we have: 
2(JV0 - P0) + 2R'e(Rs(N0 - co) +co - P1) + ... + 

2CRr)W(JV 0 - co) + co - JV1) = 0 
or 
«JV0 - ru» + (co + R9W + ... + (Rr1Yw) -

(P0 + K9P1 + ... + (Rr1YP^1) = 0 
Having the third term equal to the zero vector and noting that 
Rf = R-g, we have: 

P0 + R^P, + Rl9P2 + ... + R^Pn-! 
JV0 = + co 

n 
Similarly for each N1n, i = 0 ... q - 1, we obtain: 

Pin + R-fPin+l + R-&Pin+2 + ••• + ^ t ^+(B-I) 
N11, + co (2) 

Substituting (2) into (1), taking the derivative with respect to co, 
and equating to zero we obtain: 

wco = (P0 + ... + /V1) + - + CV„ + ... + Pn-I) + 
P0 + RePo + ••• + ^V" Po 

or 
P0 + ... + Pm 

Thus we showed that the center of mass is invariant under the 
symmetry transformation. Denoting P, = P, - co and JV; = Nj-
w for ally, we obtain from (2) for each JV,„ (i = O...C7-I): 

Pin + R-ePin+l + ^Vi'n+2 + ••• + ^ 5 -0(1+(It-!) 
JV- = —• 

n 
i.e., when considering the center of mass as origin, we find that 
the transformed vector JV1n equals the average of the vectors of 
the ith subgroup rotated toward Pin by 2iri/n radians. 

Note that when P(„,_..., P,„+(B-I) are C„-symmetric about the 
center of mass, JV1n = P1n as expected. 

Toward a Geometric Intuition. Assuming the center of mass 
co is at the origin, denote by P, the center of mass of the /th 
symmetry association \Pin,..., P1n+^1)J. Let Pln+J = Pln+; - P, for 
j = 0...« - 1 and /' = 0...q - 1. Substituting into (2) (with co = 
O): 

(P1n + P1) + R^1(P1n+1 + P1) +... + J t e j K / W i ) + P1) 
Nin = 

Denote by co the center of mass of the transformed vectors. Since 
JV0,..., JVn,., constitute a Cn-symmetrical shape, the following must 
be satisfied: 

and we have: 

/V1n = 
Pin "*" •K-aMn+l "*"••• +R% Pln+C-In+C-l) 
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Thus we proved the optimality of the geometrical intuition of the 
symmetry transformation given in Section 3.2 and Section 3.3; 
i.e., apply the symmetry transform on each subgroup of vectors 
around their center of mass and then translate to the center of 
mass w of all vectors (see Figure 7). 

A.2. Reflection Symmetry. Given a set of vectors (whose source 
is the origin and destinations are points of an object) P0,..., Pn^1, 
we assume m = Iq. For simplicity we assume that the division 
into q pairs of vertices (as described in Section 3.4) is such that 
every two consecutive vectors constitute a pair (i.e., {Pv, P2,+i) 
for i = O...̂  - 1). We wish to find the reflective-symmetry 
transformation of these vectors. 

As in the C„-symmetry case, we denote by W0, ..., AVi the 
vectors obtained from P0. •••> ?m-\ under the symmetry trans­
formation. Following the symmetry transformation definition, 
the following must be minimized over N0, .... Nn-I-

1IiV0-F0H
2 + ...+ WN^-Pn (3) 

Following the definition of reflection symmetry, we have: 
AV1 = R^RjR11(N21 - u) + o> (4) 

where « is center of mass the transformed vectors, R0JSa rotation 
matrix of angle 8 about the origin, and R^ is a reflection matrix 
about the y axis, (i.e., for each pair, one transformed vector is 
a reflection of the other transformed vector about a line passing 
through the center of mass at angle 8 to the y axis). 

For clarity, we will set R = R-^RfR9. Note that R' = R and 
R'R • /. Substituting (4) into (3) we minimize: 

HJV0 - P0Il
2 + WR(N0 - » ) + « - P1H

2 + ... + \\Nm„2 -

/V2II2 + WR(Nn^2 - « ) + « - Pm_,||2 (5) 

Taking the first derivative with respect to N0 and equating to zero: 

2(AT0 " Po) + 2R'(R(N0 - u) + <o - P1) = 0 
and 

Wn = 
P0 + RP^ oi - Ru 

Similarly for each N21, i = 0...q - 1 

N,_< = 
P21 + RP2I^i ,U-R(D 

(6) 

Substituting into (5), taking the derivative with respect to «, and 
equating to zero, we obtain: 

2(1 - R1KRP1 - P0 + (/ - R)a>) + ... + 
2(1 -K)(RPn-I ~ Pn-I + (I- *)«) - 0 

and 
P0 + ... + P111., 

Thus, similar to the symmetry transformation for Cn symmetry, 
the center of mass remains invariant. 

Without loss of generality we will assume the origin is at the 
center of mass. From (S) and (6) we must minimize: 

H ^ I » + - + « J t f - ,
2 " f ' r t | » (7) 

Expanding P1 - (X1, Y1), i = 0...m - 1 and: 
R = R_JifR6 = 

( cos 9 -sin 9 V - I 0 ] [ c o s 8 sin 9 ] _ [-cos 26 -sin 26] 
sin 6 cos 6 A 0 \ / \ -sin 6 cos 6 / \-sin 26 cos 26 / 

Taking the derivative with respect to 6 and equating to zero, we 
obtain: 

Uu 20 ~ iX°Yl + YoXl) + '" + (*""2*V l + 1 ^ * * - 1 * ( 8 ) (X0X] - Y0Yi) + ... + (Xnr.2Xm_1 - JV2JV1) 

i.e., the reflection axis at angle 8 (from the y axis) which satisfies 

(8), minimizes the symmetry distance of the object; thus the 
symmetry transformation transforms the object into a reflec­
tion-symmetric object with this reflection axis. 

Note that two possible solutions exist for (8). It is easily seen 
that the solution which is the minimum is achieved when 
sin 8 cos 8 is of opposite sign to the numerator of (8). Thus all 
N„ i = 0...W-1, can be calculated and the symmetry transfor­
mation of P0 P„-i evaluated. 

B. Extreme Cases: S(Cn) = 100. Following the CSM method 
the S values obtained are limited to the range 0...100. The lower 
bound of this range is obvious from the fact that the average of 
the square of the distances moved by the object points is necessarily 
positive. The upper bound of the average is limited to 1 since the 
object is previously normalized to maximum distance of 1, and 
by translation of all vertex points to the center of mass, a sym­
metric shape is obtained. (The average is thus less than or equal 
to 1 and the S value no more than 100.) 

The value of S(Cn) = 100 is actually obtained for extreme cases 
such as a polygon of m vertices (m = qn) whose contour outlines 
a regular q-gon (i.e., every qth vertex of the m-gon coincides with 
a vertex of a regular g-gon). Thus an extreme case of C2 symmetry 
is obtained for a polygon of six vertices whose contour describes 
a regular triangle (requiring a spiral of two cycles from P0 to P5); 
i.e., every pair of vertices of the 6-gon which are 3 apart along 
the contour, coincide with a vertex of the triangle (see Figure 18). 
The symmetry measure of this polygon is S(C2) = 100, and its 
"closest" C2-symmetric object is a point. This can easily be seen 
from the geometric description given in Section 3.3 and follows 
from the fact that, for each subset of two vertices, the folded and 
averaged vector (denoted P\>) coincides with the center of mass 
of the subset. Thus the C2 symmetry of each pair is a point located 
at the centroid of the triangle, and we obtain the "closest" C2-
symmetric shape, a point located at the center of mass of the 
polygon. Thus, since the polygon is scaled initially, the average 
squared distance from vertex to center of mass is one. 

C. Symmetry Transform in 3D: Computations. Cl. Rotational 
Symmetry. Given a set of vectors in 3D, P0,..,, P„_u we assume 
m = nq. For simplicity we assume that the division into q sub­
groups of n vertices is such that every n consecutive vectors 
constitute a subgroup (i.e., \Pin,.... Pin+(„-i)} for i = 0...q - 1 is 
a subgroup). We wish to find the C„-symmetry transformation 
of these vectors. 

Denote by N0,..., N1n-I the vectors obtained from P0,..., P^ 1 
under the symmetry transformation. Following the symmetry 
transformation definition, the following must be minimized over 
N0, .... Nn-I-. 

WN0 + Wm (9) 

Without loss of generality, we assume the origin is at the center 
of mass (proof is similar to the 2D case given in Appendix A.l). 

Following the definition of Cn symmetry in 3D, we have for 
each subgroup /«» 0...^ - 1: 

Nin+i = R*,-eNtn 

where Rn<e is the rotation by angle 8 = 2T//» about the unit vector 
n; i.e., for each subgroup, the transformed vectors form a regular 
n-gon on a plane perpendicular to the rotational axis with center 
of mass on the rotational axis. 

Substituting in (9), taking the first derivative with respect to 
Â , and equating to zero, we have as in 2D for i = 0...q - 1: 

_ Pin + RhfiPin+\ + RflfiPin+l + ••• + RnJ Pin+(n-]) 

n 

From (9) and (10) we must minimize the following over all possible 
rotational axes h: 

\\-(n - I)P0 + Rn^P1 + ... + RftP^W2 + - + 
WRn^6P0+ ... +RtfPn - ( « - DP^1 II

2 + ... (H) 

file:///-sin
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Using the Rodrigues formula, the first term of (11) becomes: 

H-Cn-IVo 

+(1-cos (8)(n«P,)n +cos (Q)P1 +sin (6XnXP1) 

+(1-cos (29)(«'P2)n +cos (2G)P2 +sin (2QKnXP2) 

+(1-cos ((n-l)e)(n«/>„_i)«+cos (n-\)Q)P ̂ +sin (/1-I)S)(WxPn-1)II
2 

Denoting the vectors: 

A0 = -(n - I)P0 + cos (B)P1 + ... + cos ((« - I)A)ZV1 

B0 = (1 - cos (O))P1 + ... + (1 - cos ((n - 1)0))JV, 

C0 = sin (9) Px + ... + sin ((« - 1)0)JV1 

we obtain for the first term in (11): 

M 0 + (H-B0)H + Hx C0II
2 

With similar expressions for all other terms, (11) can be written: 

L M y + (H-B1)H + H X CjV (12) 

We minimize (12) over all possible vectors n under the constraint 
Il n|| - 1. Using Lagrange multipliers we obtain the following 
nonlinear system of matrix equations: 

Mn + H-Xn = O 

1. Introduction 

A proper description of unsupported metal-metal bonds in 
naked dimers as well as binuclear complexes has been one of the 
more intriguing challenges to modern computational chemistry 
concerned with electronic structure theory. Intense scrutiny has 
been given to the hextuple bonded M2 (M = Cr, Mo, W) dimers1"5 

(1) Delley, B.; Freeman, A. J.; Ellis, D. E. Phys. Rev. Lett. 1983, 50,488. 
(2) Baycara, N. A.; McMaster, B. N.; Salahub, D. R. MoI. Phys. 1984, 

52, 891. 
(3) Ziegler, T.; Tschinke, V.; Becke, A. Polyhedron 1987, 6, 685. 
(4) Goodgame, M. M.; Goddard, W. A., Ill Phys. Rev. Lett. 1985,54,661. 
(5) Bursten, B. E.; Cotton, F. A.; Hall, M. B. J. Am. Chem. Soc. 1980, 

102, 6348. 

rin - 1 = 0 

where M is the matrix: E™=o(^ + CJCJ + AJB'J + BjA'j), H is 
the vector zZT=o(^j * Aj), and X is the Lagrange multiplier. 

Several numerical methods are available for solving such 
nonlinear systems. We used a variant of the iterative Newton 
method. This method requires initial values which we chose as 
the principal axes of the object whose Cn symmetry we are 
measuring (iteratively solving the system for each principal axis 
and choosing the best solution). 

C.2. Reflection-Symmetry. Given a set of vectors in 3D, P0, 
..., Pn-I, we assume m = 2q. For simplicity we assume that the 
division into q pairs of vertices (as described in Section 3.4) is 
such that every two consecutive vectors constitute a pair (i.e., (P2,, 
P2J+1) for i = 0...q - 1). We wish to find the reflective-symmetry 
transformation of these vectors. Given a reflection plane, S(<r) 
is calculated (according to eq 7 and similar to the description given 
in Section 3.4 for the 2D case) by reflecting one vector from each 
pair across the reflection plane, averaging with the other vector 
of the pair, and reflecting back the obtained average vector (see 
also Figure 8). In the general case, where the reflection plane 
is not known a priori, a minimization process must be adopted 
to find the reflection plane that minimizes the symmetry distance. 
We chose a gradient descent method which incrementally changes 
the reflection plane so that the CSM value is decreased at each 
iteration. The process converges to the reflection plane rninimizing 
the symmetry distance. 

as well as the quadruple3'6"10 and triple bonded" binuclear com­
plexes of the chromium triad. Many of the difficulties originate 
from the presence of a- as well as «•- and 5-bonds with vastly 
different requirements in terms of electron correlation. The 
computational problems are compounded further by the need to 
give a proper description of the relative involvement from the 
rather diffuse s-type orbitals as well as the more contracted d 
orbitals. It is still far from routine to provide a quantitative 

(6) Ziegler, T. /. Am. Chem. Soc. 1984, 106, 5901. 
(7) Ziegler, T. J. Am. Chem. Soc. 1985, 107, 4453. 
(8) Benard, M.; Wiest, R. Chem. Phys. Lett. 1985, 122, 447. 
(9) Hall, M. B. Polyhedron 1987, 6, 679. 
(10) Bursten, B. E.; Clark, D. L. Polyhedron 1987, 6, 695. 
(11) Ziegler, T. /. Am. Chem. Soc. 1983, 105, 7543. 
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Abstract: Using approximate density functional theory (DFT), the electronic and geometrical structures of thioether-containing 
d3-d3 face-sharing bioctahedral complexes of the type [Mo2Cl9.„(SH2)„]^3, with n = 2, 3, 4, 5, and (SH2)C12MO(/U-C1)2(M-
SR2)MoCIj(SH2), with R = H, F, CH3, are studied. AU structures have been partially optimized and are in good agreement 
with the experiment. The fact that a thioether possesses one lone pair less than chloride decreases the repulsive interaction 
within the bridge. This and the availability of an empty a* orbital on the thioether ligand are largely responsible for a remarkable 
shortening of the Mo-Mo bond. All Gt-Cl)3 complexes exhibit a high-spin configuration with a long Mo-Mo distance (282 
pm-268 pm), whereas the systems with one or more SR2 ligands in the bridge has a low-spin configuration with a short Mo-Mo 
bond (256 pm-246 pm). The spin-coupling constant 7ab

Ia of the antiferromagnetic complex [(SH 2)CI 2MO(^-CI) 3MOCI 2(SH 2)]" 
(Ia) has been calculated to be -385 cm"1, in close agreement with experimental coupling constant for related systems. Fragment 
analysis shows that the largest contribution to bonding clearly stems from u donation of electron density from the sulfur's 
lone pairs (px and sp-hybrid). The cr-donor strength increases as follows: S(CH3)2 > SH2 > SF2. However, back-donation 
from the metal centers to a vacant a* orbital of the bridging thioether represents a sizable portion of the overall bonding energy. 
Expectedly, the ir-acceptor ability of thioethers increases upon an increased electronegativity of the substituent on the thioether. 
Back-bonding is of lesser importance for terminal thioethers. 
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